Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N. Srinivasan, ${ }^{\text {a }}$ B. Sridhar ${ }^{\text {b }}$ and R. K. Rajaram ${ }^{b_{*}}$

${ }^{\text {a }}$ Department of Physics, Thiagarajar College, Madurai 625 009, India, and ${ }^{\text {b }}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
H -atom completeness 70\%
R factor $=0.069$
$w R$ factor $=0.220$
Data-to-parameter ratio $=7.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

t-Phenylalanine-nitric acid (2/1)

In the title compound, $2 \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{H}^{+} \cdot \mathrm{NO}_{3}{ }^{-}$, both phenylalanine residues have a gauche I conformation. The aggregation of the hydrophilic zone is along $z=0$ and the hydrophobic zone is sandwiched between two such layers at $z=0$ and $z=1$.

Comment

The crystal structures of l-phenylalanine hydrochloride (Gurskaya \& Vainshtein, 1963; Al-Karaghouli \& Koetzle, 1975), L-phenylalanine L-phenylalaninium formate (Gorbitz \& Etter, 1992), bis(L-phenylalanine) sulfate monohydrate (Nagashima et al., 1992) and L-phenylalanine L-phenylalaninium perchlorate (Srinivasan \& Rajaram, 1997) have been reported. Even though the title compound, (I), has been studied (Srikrishnan et al., 1984), no structural data are available as the above publication does not contain the atomic coordinates and has a misprint in one of the cell dimensions. Therefore, in the present work, an independent X-ray diffraction study of the title compound was undertaken.

(I)

Both phenylalanine residues (1 and 2) have similar geometries (Fig. 1). In both residues, the bond distances $\mathrm{C}-\mathrm{O}$ [1.313 (6) and 1.311 (7) $\AA]$ and $\mathrm{C}=\mathrm{O} \quad[1.202$ (8) and 1.220 (7) \AA] are nearly equal and the single-bonded O atoms of 1 and $2(\mathrm{O} 12 \cdots \mathrm{O} 22)$ are at a distance of 2.426 (8) \AA. This may refer to a short hydrogen bond between the singly bonded carboxyl O atoms ($\mathrm{O} 12 \cdots \mathrm{O} 22$), as found in $\mathrm{L}-$ phenylalanine l-phenylalaninium perchlorate (Srinivasan \& Rajaram, 1997). However, this H atom could not be located unequivocally. Hence, taking into account the equality of the $\mathrm{C}-\mathrm{O}$ distances (see above), it can be surmised that the two residues may be connected by either a symmetric hydrogen bond or an asymmetric hydrogen bond with the H atom disordered over two positions.

The conformation angles ψ^{1} for residues 1 and 2 are $-9.9(7)$ and $2.5(8)^{\circ}$, respectively (see Table 1$)$. This tendency

Received 10 July 2001

Accepted 1 September 2001
Online 11 September 2001

Figure 1
The structures of phenylalanine residues showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

Figure 2
Packing diagram for the title compound viewed down the b axis
towards non-planarity is also found in various amino acids (Lakshminarayanan et al., 1967). The branched side conformation angle χ^{1} shows a gauche I conformation for both residues $\left[68.2(7)\right.$ and $\left.71.0(7)^{\circ}\right]$, which agrees well with formate and perchlorate complexes. The χ^{21} [89.0 (8) and $\left.97.0(8)^{\circ}\right]$ and $\chi^{22}\left[-92.3(8)\right.$ and $\left.-84.3(7)^{\circ}\right]$ torsion angles indicate that the residues have folded conformations.

The aggregation of the hydrophilic zone is along the $z=0$ plane. The hydrophobic zone at $z=\frac{1}{2}$ consists of the phenyl groups of both molecules and is sandwiched between two hydrophilic layers in the planes $z=0$ and $z=1$ (Fig. 2).

Experimental

The title compound was crystallized from an aqueous solution of a 2:1 stoichiometric ratio of l-phenylalanine and nitric acid by slow evaporation.

Crystal data
$2 \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{H}^{+} \cdot \mathrm{NO}_{3}{ }^{-}$
$M_{r}=393.39$
Monoclinic, $P 2_{1}$
$a=12.536$ (16) \AA
$b=5.378$ (4) A
$c=14.962$ (9) A
$\beta=107.83$ (8) ${ }^{\circ}$
$V=960.2(15) \AA^{3}$
$Z=2$
$D_{x}=1.361 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in a mixture of carbon tetrachloride and xylene
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=14.5-23.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colorless
$0.45 \times 0.30 \times 0.15 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.963, T_{\text {max }}=0.984$
1895 measured reflections
1895 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.220$
$S=1.09$
1895 reflections
250 parameters
H -atom parameters constrained

1356 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 6$
$l=0 \rightarrow 17$
3 standard reflections frequency: 60 min intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1548 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=0(4)$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

O11-C11	$1.202(8)$	O21-C21	$1.220(7)$
O12-C11	$1.313(6)$	O22-C21	$1.311(7)$
O11-C11-C12-N11	$-9.9(7)$	O21-C21-C22-N21	$2.5(8)$
N11-C12-C13-C14	$68.2(7)$	$\mathrm{N} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$71.0(7)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19$	$89.0(8)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 29$	$97.0(8)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-92.3(8)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$-84.3(7)$

H atoms bonded to C atoms were placed in geometrically calculated positions and allowed to ride on the attached atoms. Attempts to introduce H atoms attached to the amino N atom yielded a slight increase in all discrepancy values. Therefore, these H atoms were not included in the final refinement. The absolute configuration is known from the synthesis and is indeterminate from the X-ray diffraction experiment.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

BS and RKR thank the Department of Science and Technology (DST), Government of India, for financial support.

References

Al-Karaghouli, A. R. \& Koetzle, T. F. (1975). Acta Cryst. B31, 2461-2465.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack H. D. (1983). Acta Cryst. A39, 876-881.

organic papers

Gorbitz, C. H. \& Etter, M. C. (1992). Acta Cryst. C48, 1317-1320.
Gurskaya, G. V. \& Vainshtein, B. K. (1963). Sov. Phys. Crystallogr. 8, 288-291.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lakshminarayanan, A. V., Sashisekaran, V. \& Ramachandran, G. N. (1967). In Conformation of Biopolymers, edited by G. N. Ramachandran. London: Academic Press.
Nagashima, N., Sano, C., Kawakita, T. \& Iitaka, Y. (1992). Anal. Sci. 8, 723725.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
Srikrishnan, T., Narasinga Rao, S. \& Parthasarathy, R. (1984). Acta Cryst. A40, C-92.
Srinivasan, N. \& Rajaram, R. K. (1997). Acta Cryst. C53, 1711-1713.

